11 Emerging Scientific Fields That Everyone Should Know About


There was a time when science could be broken down into neat-and-tidy disciplines – straightforward things like biology, chemistry, physics, and astronomy. But as science advances, these fields are becoming increasingly specialized and interdisciplinary, leading to entirely new avenues of inquiry. Here are 11 emerging scientific fields you should know about.


If you know about Toxoplasma gondii – the cat-spawned parasite that alters both rodent and human behavior – then you know about the work of neuroparasitologists. The fact that these eerie parasites now have their very own scientific discipline devoted to them shows just how prevalent they are in nature.

These parasites typically alter host behavior as a part of their reproductive strategy (often by being consumed and excreted by a third party). Hairworms, which live inside grasshoppers, eventually need to leave their hosts to continue their life cycle. Rather than leave peacefully, however, they release a cocktail of chemicals that makes the grasshoppers commit suicide by leaping into water. The hairworms then swim away from their drowning hosts.

Organic Electronics

Normally, electronics are associated with inert and inorganic conductors and semiconductors. But a new branch of electronics is emerging that uses conductive polymers and conductive small molecules – both of which are carbon-based. It’s a highly interdisciplinary field that involves the design, synthesis, and processing of functional organic and inorganic materials, along with the development of advanced micro- and nanofabrication techniques and circuit design. To be fair, it’s not an entirely new field, as preliminary concepts and devices were first developed in the early 1970s. But it has only been recently that things have picked up, particularly on account of the nanotechnology revolution. Organic electronics introduces the potential for organic solar cells, self-assembling monolayers in functional electronic devices, and chemical circuits that could replace computer chips for human implantation (the cyborg of the future may very well be more organic than synthetic!).

Recombinant Memetics

This one’s quite speculative, and it’s technically speaking still in the proto-science phase. But it’ll only be a matter of time before scientists get a better handle on the human noosphere (the collective body of all human information) and how the proliferation of information within it impacts upon virtually all aspects of human life.

Similar to recombinant DNA (in which different genetic sequences are brought together to create something new), recombinant memetics is the study of how memes (ideas that spread from person to person) can be adjusted and merged with other memes and memeplexes (a cohesive collection of memes, like a religion) for beneficial or ‘socially therapeutic’ purposes (such as combating the spread of radical and violent ideologies). This is similar to the idea of ‘memetic engineering’, which philosopher Daniel Dennett suggested could be used to maintain cultural health. Or what DARPA is currently doing via their ‘narrative control’ program.

Computational Social Science

Similar to cliodynamics, computational social science is the rigorous investigation of social phenomenon and trends over time. The use of computers and related information processing technologies is central to this discipline. Quite obviously, this field has only really been possible since the advent of computing, and most especially since the rise of the internet. Computational social scientists study the copious amounts of information left behind from emails, tweets, Google searches, and on and on. It’s a field of study that’s attracting not just social scientists, but mathematicians and computer scientists as well. Examples of their work include studies into the structure of social networks and how information spreads across them, or how intimate relationships form on the Web.

Quantum Biology

Physicists have known about quantum effects for well over a hundred years, where particles defy our sensibilities by disappearing from one place and reappearing in other, or by being in two places at once. But these effects are not relegated to arcane lab experiments. As scientists are increasingly suspecting, quantum mechanics may also apply to biological processes.

Perhaps the best example is photosynthesis – a remarkably efficient system in which plants (and some bacteria) build the molecules they need by using energy from sunlight. It turns out that photosynthesis may in fact rely on the “superposition” phenomenon, where little packets of energy explore all possible paths, and then settle on the most efficient one. It’s also possible that avian navigationDNA mutations (via quantum tunnelling), and even our sense of smell, relies on quantum effects. Though it’s a highly speculative and controversial field, its practitioners look to the day when insights gleaned may result in new drugs and biomimetic systems.


Like exo-oceanographers and exo-geologists, exo-meteorologists are interested in studying natural processes which occur on planets other than Earth. Now that astronomers are able to peer more closely into the inner-workings of nearby planets and moons, they’re increasingly able to track atmospheric conditions and weather patterns. Jupiter and Saturn, with their impossibly large weather systems, are prime candidates for study. So is Mars, with it’s regularly occurring dust storms. Even planets outside our solar system are being studied by exo-meteorologists. And interestingly, exo-meteorologists may eventually find signs of extraterrestrial life on an exoplanet by detecting organic signatures in atmospheres, or elevated carbon dioxide levels – a possible sign of an industrial-age civilization.

Synthetic Biology

Synthetic biology is the design and construction of new biological parts, devices and systems. It also involves the redesign of existing biological systems for any number of useful purposes. Craig Venter, a leader in this field, shook the biology community in 2008 by announcing that he had manufactured the entire genome of a bacterium by piecing together its chemical components. Two years later his team created “synthetic life” – DNA created digitally, and then printed and inserted into a living bacterium. And last year, synbio scientists created the first complete computational model of an actual organism.

Looking ahead, synthetic biologists will sequence and analyze genomes to create custom-designed bootable organisms and biological robots that can produce chemicals from scratch, like biofuels. There’s also the potential for pollution devouring cyborg bacteria, and the downloading and printing of recently updated vaccines during a pandemic. The possibilities are almost endless.

Quantitative Biology

Quantitative biology, as its name implies, is an effort to understand biological processes through the language of mathematics. But it also applies other quantitative methods, like physics and computer science. The University of Ottawa explains how it came about:

With the advances in biological instrumentation and techniques, and easy access to computing power, biology is generating large amounts of data at an increasing speed. Acquiring the data and making sense of it increasingly requires quantitative approaches. At the same time, coming from a physicist’s or mathematician’s point of view, biology has reached a state of maturity where theoretical models of biological mechanisms can be tested experimentally. This has led to the development of the broad field of quantitative biology.

Scientists working in this field analyze and measure everything from the molecular scale right through to the organismal and ecosystem level.


Cliodynamics is an interdisciplinary area of research that combines historical macrosociology, economic history, the mathematical modeling of long-term social processes, and the building and analysis of historical databases. It’s basically Asimov’s psychohistory come to life.

The name is a portmanteau of Clio, the muse of history, and dynamics, the study of changes over time. Simply put, it’s an effort to quantify and describe the broad social forces of history, both to study the past, and as a potential way to predict the future. An example of cliodynamics was Turchin’s recent paper forecasting social unrest.

Cognitive Economics

Economics isn’t typically associated with science, but that could change as the field integrates with traditional scientific disciplines. Not to be confused with behavioral economics (the study of our behaviors in the context of economic decision making), cognitive economics is about how we think. Leigh Caldwell, who runs a blog dedicated to the field, puts it this way:

Cognitive economics… looks at what is actually going on within the individual’s mind when they make that choice. What is the internal structure of their decision-making, what are the influences on it, how does information enter the mind and how is it processed, what form do preferences take internally, and then ultimately how are all those processes expressed in our behaviour?

Looking at it another way, cognitive economics is to physics what behavioral economics is to engineering. To that end, cognitive economists begin their analysis at a lower, more reductionist level, and form microfounded models of how people make decisions to devise a model of large-scale economic behaviors. To help them with this, cognitive economists consider the related fields of cognitive science and computational economics, along with theories about rationality and decision making.


Also known as nutritional genomics, this is the study of the complex interplay between food and genetic expression. Scientists working in this field seek to understand the role of genetic variation, dietary response, and the ways in which nutrients affect our genes. And indeed, food has a profound effect on our health – and it starts quite literally at the molecular level. Nutrigenomics works both ways; our genes influence our dietary preferences, and vice-versa. A key goal of nutrigeneticists is to establish personalized nutrition – matching what we eat with our own unique genetic constitutions. More here.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: